Daniel F. Voytas, PhD

McKnight Presidential Endowed Professor, Department of Genetics, Cell Biology and Development

Daniel F. Voytas

Contact Info


Office Phone 612-626-4509

Lab Phone 612-624-5196

Office Address:
Microbial and Plant Genomics
328 CargillB
1500 Gortner Ave
St Paul, MN 55108

Mailing Address:
Microbial and Plant Genomics
Room 111 CargillB
1500 Gortner Ave
St Paul, MN 55108

Lab Address:
Microbial and Plant Genomics
350 CargillB
1500 Gortner Ave
St Paul, MN 55108

PhD, Harvard Medical School, 1990



Plant genome engineering through homologous recombination; Retrotransposable elements and genome organization


Research Summary/Interests

The ability to precisely alter DNA sequences in living cells makes possible detailed functional analysis of genes and genetic pathways. In plants, targeted genome modification has applications ranging from understanding plant gene function to developing crops with new traits of value. We have enabled efficient methods for targeted modification of plant genomes using sequence-specific nucleases. With zinc finger nucleases (ZFNs), TAL effector nucleases (TALENs), and CRISPR/Cas9 reagents, we have achieved targeted gene knockouts, replacements and insertions in a variety of plant species. Current work is focused on optimizing delivery of nucleases and donor DNA molecules to plant cells to more efficiently achieve targeted genetic alterations.


  • Baltes N.J., Gil-Humanes J., Cermak T., Atkins P.A. and Voytas D.F. (2014) DNA Replicons for Plant Genome Engineering. Plant Cell 26: 151-63
  • Qi Y., Zhang Y., Zhang F., Baller J.A., Cleland S.C., Ryu Y., Starker C.G. and Voytas D.F. (2013) Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Res. 23: 547-54
  • Zhang Y., Zhang F., Li X., Baller J.A., Qi Y., Starker C.G., Bogdanove A.J. and Voytas D.F. (2013) TALENs enable efficient plant genome engineering. Plant Physiol 161: 1-8
  • Baller J.A., Gao J. and Voytas D.F. (2011) Access to DNA establishes a secondary target site bias for the yeast retrotransposon Ty5. Proc Natl Acad Sci USA 108: 20351-6
  • Baller J.A., Gao J., Stamenova R., Curcio M.J. and Voytas D.F. (2012) A nucleosomal surface defines an integration hotspot for the Saccharomyces cerevisiae Ty1 retrotransposon. Genome Res 22: 704-13
  • Cermak T., Doyle E.L., Christian M., Wang L., Zhang Y., Schmidt C., Baller J.A., Somia N.V., Bogdanove A.J. and Voytas D.F. (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39: e82 Christian, M., Cermak, T., Doyle, E., Schmidt, C., Zhang, F., Hummel, A., Bogdanove, A.J. and Voytas D.F. (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186: 757-61